
 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

ADDRESSING MODES OF 8086

Addressing mode indicate a way of locating data or operands. Depending upon the data types

used in the instruction and the memory addressing modes, any instruction may belong to one

or more addressing modes, or some instruction may not belong to any of the addressing modes.

Thus addressing modes describe the types of operands and the way they are accessed for

executing an instruction According to the flow of instruction execution the instruction may be

categorized as

1.Sequential control flow instructions

2.Control transfer instructions

Sequential control flow instructions are the instructions which after execution, transfer

control to the next instruction appearing immediately after it in the program. For example, the

arithmetic, logical, data transfer and processor control instructions are sequential control flow

instructions.

The control transfer instructions, on the other hand, transfer control to some predefined

address or the address somehow specified in the instruction, after their execution. For example,

INT, CALL, RET and JUMP instructions fall under this category

Classification of addressing modes

1.Immediate

2.Direct

3.Register

4.Register Indirect

5.Indexed

6.Register Relative

7.Based Indexed

8.Relative Based Indexed

9.Intrasegment Direct

10.Intrasegment Indirect

11.Intersegment Direct

12.Intersegment Indirect

1.Immediate addressing mode

In this type of addressing, immediate data is a part of instruction and appears in the form

successive byte or bytes. In this mode, 8- or 16-bit data can be specified as part of the

instruction - OP Code Immediate Operand

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

MOV AX, 0005H

Here 0005H is the immediate data.

MOV DX, 0525 Moves the 16 bit data 0525 H into DX

In the above two examples, the source operand is in immediate mode and the destination

operand is in register mode.

A constant such as “VALUE” can be defined by the assembler EQUATE directive such as

VALUE EQU 35H

Example: MOV BH, VALUE Used to load 35 H into BH

2.Direct addressing mode

Here 16-bit memory address (offset) is directly specified in the instruction.

Eg: MOV AX, [5000H]

Here, data resides in a memory location in the data segment, whose effective address may be

computed using 5000H as the offset address and content of DS as segment address. Thus the

effective address is 10H*DS+5000H

3.Register addressing mode

Here the data is stored in a register and it is referred using the particular register. All the

registers, except IP, may be used in this mode.

Eg: MOV BX, AX

4.Register Indirect addressing mode

In this mode, the offset address of data is in either BX or SI or DI register. The default segment

is either DS or ES.

Eg: MOV AX, [BX]

Here data is present in a memory location in DS whose offset address is in BX. The effective

address of the data is given as 10H*DS+[BX]

5.Indexed addressing mode

In this addressing mode, offset of the operand is stored in one of the index registers. DS is the

 default segment for index registers SI and DI.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

Eg: MOV AX, [SI]

Here data is available at an offset address stored in SI in DS. The effective address is computed

as 10H*DS+[SI]

6.Register Relative addressing mode

In this mode, the data is available at an effective address formed by adding an 8-bit or 16-bit

 displacement with the content of any one of the registers BX, BP, SI and DI in the default

 (either DS or ES) segment.

Eg: MOV AX, 50H[BX]

Here the effective address is given as 10H*DS+50H+[BX]

7.Based Indexed addressing mode

In this mode, the effective address is formed by adding content of a base register (any one of

BX or BP) to the content of an index register (any one of SI or DI). The default segment register

may be ES or DS.

Eg: MOV AX, [BX][SI]

Here, BX is the base register and SI is the index register. The effective address is

 10H*DS+[BX]+[SI]

8.Relative Based Indexed addressing mode

The effective address is formed by adding an 8 or 16 bit displacement with the sum of contents

 of any one of the base registers (BX or BP) and any one of the index registers, in a default

 segment.

Eg: MOV AX, 50H[BX][SI]

Here 50H is an immediate displacement, BX is a base register and SI is an index register. The

 effective address of data is computed as 10H*DS+[BX]+[SI]+50H

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

There are two addressing modes for control transfer instructions

1. Intrasegment mode: If the destination location lies in the same segment the mode is called

intrasegment

2. Intersegment mode: If the location to which the control is to be transferred lies in a different

segment other than the current one the mode is called intersegment

9.Intrasegment direct mode

In this mode, the address to which the control is to be transferred lies in the same segment in

which the control transfer instruction lies and appears directly in the instruction as an

immediate displacement value. In this mode, the displacement is computed relative to the

content of the IP.

The effective address to which the control will be transferred is given by the sum of 8 or 16 bit

 displacement and current content of IP.

In case of jump instruction, if the signed displacement(d) is of 8 bits (i.e, -128<d<+127), then

it is short jump

 if it is of 16 bits(i.e.32768<d<+32767), it is long jump.

 JMP SHORT LABEL

Here LABEL lies lies within -128 to +127 from the current IP content

10.Intrasegment Indirect mode

In this mode, the displacement to which the control is to be transferred, is in the same segment

 in which the control transfer instruction lies, but it is passed to the instruction indirectly. Here

 the branch address is found as the content of a register or a memory location.

 JMP [BX] //Jump to effective address stored in BX

11.Intersegment Direct

In this mode, the address to which the control is to be transferred is in a different segment. This

 addressing mode provides a means of branching from one code segment to another code

 segment. Here, the CS and IP of the destination address are specified directly in the instruction.

 JMP 5000H:2000H //Jump to effective address 2000H in segment 5000H

12.Intersegment Indirect

In this mode, the address to which the control is to be transferred lies in a different segment

 and it is passed to the instruction indirectly. i.e contents of a memory block containing four

 bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially.

 JMP [2000H]

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

INSTRUCTION SET OF 8086/8088

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor support is called Instruction Set.

8086 has more than 20,000 instructions.

Opcode: - It stands for operational code. It specifies the type of operation to be performed by

CPU. It is the first field in the machine language instruction format. E.g. 08 is the opcode for

instruction “MOV X,Y”.

Operand: - We can also say it as data on which operation should act. operands may be register

values or memory values. The CPU executes the instructions using information present in this

field. It may be 8-bit data or 16-bit data.

Assembler: - it converts the instruction into sequence of binary bits, so that this bit can be read

by the processor.

Mnemonics: - these are the symbolic codes for either instructions or commands to perform a

particular function. E.g. MOV, ADD, SUB etc.

The instruction set of 8086 is classified into:

(1). Data Copy/Transfer instructions.

(2). Arithmetic & Logical instructions.

(3). Branch instructions.

(4). Loop instructions.

(5). Machine Control instructions.

(6). Flag Manipulation instructions.

(7). Shift & Rotate instructions.

(8). String instructions.

(1). Data copy/transfer instructions.

MOV Destination, Source

• The MOV instruction copies a word or byte of data from a specified source to a

specified destination.

• The destination can be a register or a memory location..

• Destination can be register or memory operand.

• Both Source and Destination cannot be memory location or segment registers at the

same time.

• They must both be of the same type (bytes or words)

E.g.

MOV CX, 037A H Put immediate number 037AH to CX

MOV AL, BL Copy content of register BL to AL

MOV BX, [0301 H] Copy byte in DS at offset 031H to BX

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

PUSH Source

• Source can be register, segment register or memory.

• This instruction pushes the contents of specified source on to the stack.

• In this stack pointer is decremented by 2.

• The higher byte data is pushed first (SP-1).

• Then lower byte data is pushed (SP-2).

E.g.:

PUSH AX

PUSH DS

PUSH [5000H]

• The sequence of operation as below

1. Current stack top is already occupied so decrement SP by one then store AH

into the address pointed to by SP

2. Further decrement SP by one and store AL into the location pointed to by SP

POP Destination

• Destination can be register, segment register or memory.

• This instruction pops (takes) the contents of specified destination.

• In this stack pointer is incremented by 2.

• The lower byte data is popped first (SP+1).

• Then higher byte data is popped (SP+2).

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

• The sequence of operation as below

1. Content of stack top memory location is stored in AL and SP is incremented by

one

2. Further contents of memory location pointed to by SP are copied to Ah and SP

is again incremented by 1

E.g.

POP AX

POP DS

POP [5000H]

XCHG Destination, source

• The XCHG instruction exchanges the content of a register with the content of another

register or with the content of memory location(s).

• It cannot exchange two memory locations directly.

• The source and destination must both be of the same type (bytes or words).

• The segment registers cannot be used in this instruction. This instruction does not affect

any flag.

E.g.

XCHG BX, AX

XCHG [5000H] ,AX

IN Accumulator, port address

• It reads from the specified port address.

• It copies data to accumulator from a port with 8-bit or 16-bit address.

• AL and AX are the allowed destinations

• DX is the only register is allowed to carry port address.

E.g.

IN AL, 80H

IN AX, DX //DX contains address of 16-bit port.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

OUT 8-bit/16-bit port address, Accumulator

• It writes to the specified port address.

• The address of the output port may be specified in the instruction directly or implicitly

in DX

• It copies contents of accumulator to the port with 8-bit or 16-bit address.

• The data to an odd addressed port is transferred on D8-D5 while that to an even

addressed port is transferred on D0 – D7

• DX is the only register is allowed to carry port address.

E.g.

OUT 80H, AL;

OUT DX, AX; //DX contains address of 16-bit port

XLAT

• Also known as translate instruction.

• It is used to find out codes in case of code conversion. i.e. it translates code of the key

pressed to the corresponding 7-segment code.

• After execution this instruction contents of AL register always gets replaced.

E.g. XLAT

LEA source(16-bit register),destination(address)

• LEA Also known as Load Effective Address (LEA).

• It loads effective address formed by the destination into the source register.

E.g.

LEA BX, ADR Effective address of label ADR ie,offset of address od ADR will

be transferred to register BX

LEA SI, ADR[BX] Offset of label ADR will be added to content of BX to form

effective address and it will be loaded in SI

LDS source, dest & LES source, dest

• LDS Also known as Load Data Segment (LDS).

• LES Also known as Load Extra Segment (LES).

• It loads the contents of DS (Data Segment) or ES (Extra Segment) & contents of the

destination to the contents of source register.

• LDS does not affect any flag

E.g.

LDS BX, [4326] Copy content of memory at displacement 4326H in DS to BL,

content of 4327H to BH. Copy content at displacement of 4328H

and 4329H in DS to DS register.

LDS BX,5000H

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

LES BX,5000H

LAHF(Load AH from Lower Byte of Flag)

• This instruction loads the AH register from the contents of lower byte of the flag

register.

• This command is used to observe the status of the all-conditional flags of flag register.

E.g. LAHF

SAHF (Store AH to lower Byte of Flag Register)

• This instruction sets or resets all conditional flags of flag register with respect to the

corresponding bit positions.

• If bit position in AH is 1 then related flag is set otherwise flag will be reset.

E.g.SAHF

PUSHF (Push Flags to stack)

• This instruction decrements the stack pointer by 2.

• It copies contents of flag register to the memory location pointed by stack pointer.

• First the upper byte and then the lower byte is pushed on to it

E.g. PUSH F

POPF (Pop flags from stack)

• This instruction increments the stack pointer by 2.

• It copies contents of memory location pointed by stack pointer to the flag register.

E.g., POP F;

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

(2). Arithmetic Instructions

• These instructions perform the operations like:

• Addition,

• Subtraction,

• Increment,

• Decrement.

ADD destination, source

• This instruction adds the contents of source operand with the contents of destination

operand.

• The source may be immediate data, memory location or register.

• The destination may be memory location or register.

• The result is stored in destination operand.

• AX is the default destination register.

• The source and the destination in an instruction cannot both be memory locations. The

source and the destination must be of the same type (bytes or words)

• Flags affected: AF, CF, OF, SF, ZF

E.g.

ADD AX,2020H; Immediate

 ADD AX,BX; Register

ADC destination, source

• Add with carry

• This instruction adds the contents of source operand with the contents of destination

operand with carry flag bit.

• The source may be immediate data, memory location or register.

• The destination may be memory location or register.

• The result is stored in destination operand.

• AX is the default destination register.

E.g.

ADC AX,2020H;

 ADC AX,BX

INC source

• This instruction increases the contents of source operand by 1.

• The source may be memory location or register.

• The source can not be immediate data.

• The result is stored in the same place

• All condition code flags ,except the carry flag, are affected depending upon the result

E.g.

INC AX;

 INC [5000H];

DEC source;

• This instruction decreases the contents of source operand by 1.

• The source may be memory location or register.

• The source can not be immediate data.

• The result is stored in the same place.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

E.g.

DEC AX; Register

 DEC [5000H]; Direct

SUB destination, source

• This instruction subtracts the contents of source operand from contents of destination.

• The source may be immediate data, memory location or register.,but source and

destination operands both must not be memory operands

• The destination may be memory location or register.

• The result is stored in the destination place. All the condition code flags are affected by

this instruction

E.g.

SUB AX,1000H;

SUB AX, BX;

SBB destination, source;

• Also known as Subtract with Borrow.

• This instruction subtracts the contents of source operand & borrow from contents of

destination operand.

• The source may be immediate data, memory location or register.

• The destination may be memory location or register.

• The result is stored in the destination operand.

E.g.

SBB AX,1000H;

 SBB AX, BX;

CMP destination, source

 Also known as Compare.

 This instruction compares the contents of source operand with the contents of

destination operands.

 For comparison it subtracts the source operand from the destination operand but does

not store the result anywhere.

 The flags are affected depending upon the result of destination operand. If both of the

operands are equal, zero flag is set. If the source operand is greater than the destination

operand, carry flag is set or else, carry flag is reset

 The source may be immediate data, memory location or register.

 The destination may be memory location or register.

 Then resulting carry & zero flag will be set or reset.

E.g.

CMP AX,1000H;

CMP AX, BX;

AAA

• Also known as ASCII Adjust After Addition.

• This instruction is executed after ADD instruction.

• AAA converts the resulting contents of AL to unpacked decimal digits.(

In the case of unpacked BCD numbers, each four-bit BCD group corresponding to a

decimal digit is stored in a separate register inside the machine)

• After addition AAA examines the contents of AL

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

(1). IF lower bits of AL<=09 and AF=0 then,

• Higher bits of AL should loaded with zeroes.

• There should be no change in lower bits of AL.

• AH also must be cleared (AH=0000 0000).

(2). IF lower bits of AL<=09 and AF=1 then,

• .Al=AL+06

• Higher bits of AL should loaded with zeroes

• Bits of AH must be incremented by 01 (i.e. AH+0001).

(3)IF lower bits of AL>09 then,

• Bits of AL must be incremented by 06 (i.e. AL+0110).

• Bits of AH must be incremented by 01 (i.e. AH+0001).

• Then higher bits of AL should be loaded with 0000.

• The AAA instruction works only on the AL register. The AAA instruction updates AF

and CF; but OF, PF, SF and ZF are left undefined.

• E.g.AAA;

AAS

• Also known as ASCII Adjust After Subtraction.

• This instruction is executed after SUB instruction.

• Numerical data coming into a computer from a terminal is usually in an ASCII code.

In this code the numbers 0 to 9 are represented by the ASCII codes 30H to 39H. The

8086 allows you to subtract the ASCII codes for two decimal digits without masking

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

the “3” in the upper nibble of each. The AAS instruction is then used to make sure the

result is the correct unpacked BCD

(1). IF lower bits of AL<=09 then,

• Higher bits of AL should loaded with zeroes.

• There should be no change in lower bits of AL.

• AH also must be cleared (AH=0000 0000).

(2). IF lower bits of AL>09 then,

• Bits of AL must be decremented by 06 (i.e. AL-0110).

• Bits of AH must be decremented by 01 (i.e. AH-0001).

• Then higher bits of AL should be loaded with 0000.

E.g. (1). AAS;

AAM

• Also known as ASCII Adjust After Multiplication.

• This instruction is executed after MUL instruction.

• Then AH=AL/10 & AL=Remainder.

• E.g.

 MOV AL,04 // AL=04

MOV BL,09 // BL=09

MUL BL // 04*09=36 (i.e. BL*AL)

 AAM // AH=03 & AL=06

AAD

• It is also known as ASCII adjust before Division

• AAD instruction converts two unpacked BCD digits in AH and AL to the equivalent

binary number in AL

Then AL=AH*10 +AL & AH=0.

E.g.

MOV AX, 0105 // AH=01, AL=05

AAD // AL=15 (i.e.0FH) & AH=00

DAA

 Decimal Adjust Accumulator.

 Used to convert the result of addition of two unpacked BCD numbers to a valid BCD

number.

 IF lower bits of AL>09.

Then AL=AL+06.

 If now upper nibble 0f AL >9,DAA adds 60 H to AL

E.g.

MOV AL,53H //AL=53H

 MOV CL,29H //CL=29H

 ADD AL,CL // AL=7CH (i.e. 12=C) & C>9.

 DAA // AL=7C+06=82H. (i.e. 0111 1100 + 0000 0110)=1000 0010

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

DAS

• Decimal Adjust after Subtraction.

• IF lower bits of AL>09.

• Then AL=AL-06.

E.g.

 MOV AL,30H // AL=30H

MOV CL,20H // CL=20H

SUB AL,CL // AL=0AH (i.e. A=10) & C=10>9.

DAS // AL=0A-06=04H. (i.e. 0000 1010 - 0000 0110)=0000 0100

MUL operand

 Unsigned Multiplication.

 Operand contents are positively signed.

 Operand may be general purpose register or memory location.

 If operand is of 8-bit then multiply it with contents of AL.

 If operand is of 16-bit then multiply it with contents of AX. And MSB bit of result is

stored in DX and LSB stored in AX

 Result is stored in accumulator (AX).

E.g.

MUL BH // (AX)= AL*BH; // (+3) * (+4) = +12.

 MUL CX //(DX) (AX)=AX*CX;

IMUL operand

• Signed Multiplication.

• Operand contents are negatively signed.

• Operand may be general purpose register, memory location or index register.

• If operand is of 8-bit then multiply it with contents of AL.

• If operand is of 16-bit then multiply it with contents of AX.

• Result is stored in accumulator (AX). And LSB in DX

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

E.g.

 IMUL BH // AX= AL*BH; // (-3) * (-4) = 12.

 IMUL CX // AX=AX*CX;

DIV operand

• Unsigned Division.

• Operand may be register or memory.

• Operand contents are positively signed.

• Operand may be general purpose register or memory location.

• For 16 bit dividend: AL-Quotient,AH-Reminder

• For 32 bit dividend: higher order bits in DX and lower order bits in AX:

Quotient in AX and reminder in DX

• AL=AX/Operand (8-bit/16-bit) & AH=Remainder.

E.g.

MOV AX, 0203 // AX=0203

MOV BL, 04 // BL=04

DIV BL // AL=0203/04=50 (i.e. AL=50 & AH=03)

IDIV operand

• Signed Division.

• Operand may be register or memory.

• Operand contents are negatively signed.

• Operand may be general purpose register or memory location.

• AL=AX/Operand (8-bit/16-bit) & AH=Remainder.

E.g.

 MOV AX, -0203 // AX=-0203

MOV BL, 04 // BL=04

DIV BL // AL=-0203/04=-50 (i.e. AL=-50 & AH=03)

NEG Src:

• —It creates 2’s complement of a given number.

• —That means, it changes the sign of a number.

• For obtaining 2’s complement it substracts the contents of destination from zero

• The result is stored back in the destination operand which may be a register or a memory

location

• If OF is set it indicates that the operation could not be completed successfully

• This instruction affects all the condition code flags

CBW (Convert Byte to Word):

• This instruction converts byte in AL to word in AX.

• The conversion is done by extending the sign bit of AL throughout AH.

• It does not affect any flag

CWD (Convert Word to Double Word):

• This instruction converts word in AX to double word in DX : AX.

• The conversion is done by extending the sign bit of AX throughout DX.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

• It does not affect any flag

(3). Logical Instructions

AND destination,source

• This instruction ANDs each bit in a source byte or word with the same numbered bit in

a destination byte or word. The result is put in the specified destination. The content of

the specified source is not changed

• Destination operand may be register, memory location.

• Source operand may be register, immediate data or memory location.

• Result is stored in destination operand.

E.g.

 MOV AX, 3F0FH // AX=3F0FH

MOV BX, 0008H // BX=0008H

AND AX,BX // AX=0008H

• Follow the rules as given below:-

(1). 1 AND 1 = 1

(2). 1 AND 0 = 0

(3). 0 AND 1 = 0

(4). 0 AND 0 = 0

3F0FH= 0011 1111 0000 1111

0008H= 0000 0000 0000 100

OR destination,source

• Destination operand may be register, memory location.

• Source operand may be register, immediate data or memory location.

• Result is stored in destination operand.

E.g.

MOV AX, 3F0FH // AX=3F0FH

MOV BX, 0098H // BX=0098H

 OR AX,BX // AX=3F9FH

• Follow the rules as given below:-

(1). 1 OR 1 = 1

(2). 1 OR 0 = 1

(3). 0 OR 1 = 1

(4). 0 OR 0 = 0

3F0FH= 0011 1111 0000 1111

0098H=0000 0000 1001 1000

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

NOT operand;

• Operand may be register, memory location.

• This instruction inverts (complements) the contents of given operand.

• Result is stored in Accumulator (AX).

E.g.

MOV AX, 0200FH // AX=200FH

NOT AX // AX=DFF0H

• Follow the rules as given below:-

(1). 1 NOT = 0

(2). 0 NOT = 1

200FH= 0010 0000 0000 1111

XOR Des, Src:

• It performs XOR operation of Des and Src.

• The XOR operation gives a high output ,when the 2 input bits are dissimilar

• Src can be immediate number, register or memory location.

• Des can be register or memory location.

• Both operands cannot be memory locations at the same time.

• CF and OF become zero after the operation.

• PF, SF and ZF are updated.

Eg:

MOV AX,3F0FH

XOR AX,0098H

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

TEST destination,source

• Both operands may be register, memory location or immediate data.

• This instruction performs bit by bit logical AND operation for flags only (i.e. only flags

will be affected).

• If the corresponding 0th bit of result contains ‘1’ then result will be non-zero & zero

flag will be cleared/reset (i.e. ZF=0).

• If the corresponding 0th bit of result contains ‘0’ then result will be zero & zero flag

will be set (i.e. ZF=1)..

E.g.

TEST AX,BX

 TEST [0500],06H

SAL/SHL: SAL / SHL destination, count

• Shift logical/Arithmetic left

• SAL and SHL are two mnemonics for the same instruction.

• This instruction shifts each bit in the specified destination to the left and 0 is stored at

LSB position. The MSB is shifted into the carry flag.

• The destination can be a byte or a word. It can be in a register or in a memory location.

The number of shifts is indicated by count

• The operand may reside in a register or a memory location but cannot be an immediate

data

Eg.

 SAL CX, 1

SAL AX, CL

SHR destination, count

• Shift logical Right

• This instruction shifts each bit in the specified destination to the right and 0 is stored at

MSB position. The LSB is shifted into the carry flag. The destination can be a byte or

a word

• It can be a register or in a memory location. The number of shifts is indicated by count

Eg. SHR CX, 1

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

SAR destination, count

• Shift Arithemetic Right

• This instruction shifts each bit in the specified destination some number of bit

positions to the right. As a bit is shifted out of the MSB position, a copy of the old

MSB is put in the MSB position. The LSB will be shifted into CF.

Eg. SAR BL, 1

RCR

• Also known as Rotate Right through Carry.

• Each binary bit of the operand is rotated towards right by one position through Carry

flag.

• Least Significant Bit (LSB) is placed in the Carry flag.

• Then carry flag bit is placed in the Most Significant Bit (MSB) position

Eg

RCR BX, 1 //Word in BX right 1 bit, CF to MSB, LSB to CF

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

RCL Destination, Count

• Also known as Rotate Left through Carry.

• Each binary bit of the operand is rotated towards left by one position through Carry

flag.

• Least Significant Bit (LSB) of operand is placed in next position.

• Then Most Significant Bit (MSB) of operand is placed in carry flag bit.

• If we want to rotate the operand by one bit position, you can specify this by putting a 1

in the count position of the instruction. To rotate by more than one bit position, load the

desired number into the CL register and put “CL” in the count position of the instruction

Eg:

RCL DX, 1 // Word in DX 1 bit left, MSB to CF, CF to LSB

ROR destination, count

• Rotate Right without carry

• This instruction rotates all bits in a specified byte or word to the right some number of

bit positions. LSB is placed as a new MSB and a new CF.

• The LSB bit is pushed into the carry flag and simultaneously it is transferred into the

MSB bit position at each operation. The remaining bits are shifted right by the specified

position

 Eg.

 ROR CX, 1

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

MOV CL, 03H

ROR BL, CL

ROL destination, count

• Rotate Left without carry

• This instruction rotates all bits in a specified byte or word to the left some number of

bit positions. MSB is placed as a new LSB and a new CF.

 Eg.

ROL CX, 1

MOV CL, 03H

ROL BL, CL

(4). String Manipulation Instructions

REP

• Also known as Repeat instruction prefix.

• REP is a prefix, which is written before one of the string instructions

• This instruction executed repeatedly until the ‘CX’ register becomes zero.

• When ‘CX’ becomes zero then program control passes to next instruction.

• There are following sub types of ‘REP’ instruction,

(i). REPE:- REPeat instruction while Equal.

(ii). REPZ:- REPeat instruction while Zero.

(iii). REPNE:- REPeat instruction while Not Equal.

(iv). REPNZ:- REPeat instruction while Not Zero.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

CMPS

• Also known as Compare String Byte or String Word.

• This instruction is used to compare two strings of bytes or words

• The length of the string must be stored in register CX.

• If both the byte or word are equal then zero flag will be set (i.e. ZF=1) otherwise it will

be reset (i.e. ZF=0).

• When zero flag will be set then ‘CX’=0.

• The DS:SI and ES:DI point to the two strings

• The REP instruction prefix is used to repeat the operation till CX becomes zero

• There are following sub types,

(i). CMPSB:- Compare String Byte.

(ii). CMPSW:- Compare String Word.

Eg:

SCAS String:

• It scans a string. It compares the String with byte in AL or with word in AX.

• The string pointed to by ES:DI register pair

• The length of the string is stored in CX

• The DF controls the mode for scanning of the string ,as stated in case of MOVSB

instruction

• Whenever a match to the specified operand is found in the string execution stops and

the zero flag is set .If no match is found the zero flag is reset

• The REPNE prefix is used with the SCAS instruction

• The string of instruction finds out if it contains WORD .It WORD is found in the word

sring before CX become zero the ZF is set otherwise the ZF is reset.The scanning will

continue till a match is found

MOVS / MOVSB / MOVSW:

• Move string ,Byte or string word

• It causes moving of byte or word from one string to another.

• In this instruction, the source string is in Data Segment(DS) and destination string is in

Extra Segment(ES).

• SI and DI store the offset values for source and destination index.

• The starting address of the source string is 10H*DS+[SI] while starting address of the

destination string is 10H*ES+[DI]

• The MOVSB/MOVSW instruction thus moves a string of bytes/words pointed by

DS:SI pair to the memory location pointed to by ES:DI pair

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

LODS

• Load String Byte or String Word

• The LODS instruction loads the AL/AX register by the contents of a string pointed to

by DS:SI register pair

• The SI is modified automatically depending upon DF

• If it is a byte transfer (LODSB) the SI id modified by one and if it is a word

transfer(LODSW) the SI modified by two

STOS

• Store String BYTE or Word

• The STOS instruction stores the AL/AX register contents to a location in the string

pointed by ES:DI register pair

(5)Control Transfer or Branching Instructions (Control Instructions)

Branch Instructions transfers the flow of execution of the program to a new address specified

in the instruction directly or indirectly. When this type of instruction is executed, the CS and

IP registers get loaded with new values of CS and IP corresponding to the location to be

transferred.

 The Branch Instructions are classified into two types

1. Unconditional Branch Instructions.

2. Conditional Branch Instructions.

Unconditional Branch Instructions:

In Unconditional control transfer instructions, the execution control is transferred to the

specified location independent of any status or condition. The CS and IP are unconditionally

modified to the new CS and IP.

Conditional Branch Instructions

When this instruction is executed, execution control is transferred to the address specified

relatively in the instruction, provided the condition implicit in the Opcode is satisfied.

Otherwise execution continues sequentially.

CALL

• Also known as unconditional call.

• Under unconditional call, the execution control is transferred to the specified location

independent of any status or condition.

• This instruction is used to call subroutine from a main program.

• The address of the procedure may be specified directly or indirectly depending upon

the the addressing mode

• There are following sub types,

(i). NEAR CALL:- Procedure is available in the same segment ie, ±32K displacement

It pushes only IP into the stack.

• When the 8086 executes a near CALL instruction, it decrements the stack pointer by 2

and copies the offset of the next instruction after the CALL into the stack. This offset

saved in the stack is referred to as the return address, because this is the address that

execution will return to after the procedure is executed. A near CALL instruction will

also load the instruction pointer with the offset of the first instruction in the procedure.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

A RET instruction at the end of the procedure will return execution to the offset saved

on the stack which is copied back to IP.

(ii). FAR CALL:- Procedure is available in the another segment .It pushes IP & CS

into the stack.

• When the 8086 executes a far call, it decrements the stack pointer by 2 and copies the

content of the CS register to the stack. It then decrements the stack pointer by 2 again

and copies the offset of the instruction after the CALL instruction to the stack. Finally,

it loads CS with the segment base of the segment that contains the procedure, and loads

IP with the offset of the first instruction of the procedure in that segment. A RET

instruction at the end of the procedure will return execution to the next instruction after

the CALL by restoring the saved values of CS and IP from the stack

RET:

• It returns the control from procedure to calling program.

• At each CALL instruction .the IP and CS of the next instruction is pushed onto stack

,before the control is transferred to the procedure .At the end of the procedure ,the RET

instruction must be executed .When it is executed the previously stored contents of IP

and CS along with flags are retrieved into to CS,IP and flag registers from the stack and

execution of the main program continues

• In case of FAR procedure the current contents of SP points to IP and CS at the time of

return

• In case of NEAR ,it points to IP only

• Every CALL instruction should have a RET.

The RET instruction is of four types

• Return within segment

• Return within segment adding 16 bit immediate displacement to the SP

contents

• Return intersegment

• Return intersegment adding 16 bit immediate displacement to the SP

contents

JMP

• Also known as unconditional jump.

• Under unconditional jump, the execution control is transferred to the specified location

using 8-bit or 16-bit displacement(intrasegment ,relative ,short or long)

• There are following three formats of jump instruction,

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

INT N: Interrupt Type N.

• In the interrupt structure of 8086, 256 interrupts are defined corresponding to the types

from 00H to FFH. When INT N instruction is executed, the type byte N is multiplied

by 4 and the contents of IP and CS of the interrupt service routine will be taken from

memory block in 0000 segment.

 INTO: Interrupt on Overflow

• This instruction is executed, when the overflow flag OF is set. This is equivalent to a

Type 4 Interrupt instruction

• The new contents of IP and CS are taken from the address 0000:0010.This is equivalent

to a Type 4 interrupt instruction

IRET: Return from ISR

• When an inerrupt sevice routine is to be called before transferring control to it ,the IP

,CS and flagregister are stored on to the stack to indicate the location from where the

execution is to be continued ,after the ISR is executed

• So at the end of each ISR ,when IRET is exeuted the values of IP, CS and Flags are

retrieved from the stack to continue the execution of the main program.

LOOP

• Jump To Specified Label If Cx not equal to 0 After Auto Decrement

• This instruction is used to repeat a series of instructions some number of times. The number

of times the instruction sequence is to be repeated is loaded into CX. Each time the LOOP

instruction executes, CX is automatically decremented by 1. If CX is not 0, execution will

jump to a destination specified by a label in the instruction. If CX = 0 after the auto

decrement, execution will simply go on to the next instruction after LOOP.

• The destination address for the jump must be in the range of –128 bytes to +127 bytes from

the address of the instruction after the LOOP instruction.

• This instruction does not affect any flag

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

Conditional jump instruction

• The last four operations are used in case of decisions based on signed binary number

operations

(6). Flag Manipulation Instructions and processor control instruction

• These instruction control the functioning of the available hardware inside the processor

chip

• These are categorized into two types

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

1. Flag manipulation instruction: It directly modifies some of the flags of 8086

2. Machine control instruction : It controls the bus usage and execution

CMC

• Also known as Complement Carry Flag.

• It inverts contents of carry flag.

• if CF = 1 then CF will be = 0.

• if CF = 0 then CF will be = 1.

E.g. CMC

STC

• Also known as Set Carry Flag.

• It makes carry flag in set condition.

• After execution CF = 1.

E.g. STC

CLI

• Also known as Clear Interrupt Flag.

• It makes interrupt flag in reset condition.

• After execution IF = 0.

E.g. CLI

CLD

• Also known as Clear Direction Flag.

• It makes direction flag in reset condition.

• After execution DF = 0.

E.g. CLD

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

(7). Machine Control Instructions

HLT

• Also known as Halt

• It makes the processor to be in stable (do nothing) condition.

• The HLT instruction causes the 8086 to stop fetching and executing instructions. The

8086 will enter a halt state. The different ways to get the processor out of the halt state

are with an interrupt signal on the INTR pin, an interrupt signal on the NMI pin, or a

reset signal on the RESET input

E.g. HLT

NOP (PERFORM NO OPERATION)

• Also known as No Operation.

• It tells about further there will be no operation to be performed.

• This instruction simply uses up three clock cycles and increments the instruction pointer

to point to the next instruction. The NOP instruction can be used to increase the delay

of a delay loop. When hand coding, a NOP can also be used to hold a place in a program

for an instruction that will be added later. NOP does not affect any flag

E.g. NOP

ESC (ESCAPE)

• This instruction is used to pass instructions to a coprocessor

• Instructions for the coprocessor are represented by a 6-bit code embedded in the ESC

instruction.

• As the 8086 fetches instruction bytes, the coprocessor also fetches these bytes from the data

bus and puts them in its queue. However, the coprocessor treats all the normal 8086

instructions as NOPs.

• When 8086 fetches an ESC instruction, the coprocessor decodes the instruction and carries

out the action specified by the 6-bit code specified in the instruction.

• In most cases, the 8086 treats the ESC instruction as a NOP. In some cases, the 8086 will

access a data item in memory for the coprocessor.

Eg: ESC

LOCK

• Each microprocessor has its own local buses and memory. The individual

microprocessors are connected together by a system bus so that each can access system

resources such as disk drive or memory. Each microprocessor takes control of the

system bus only when it needs to access some system resources. The LOCK prefix

allows a microprocessor to make sure that another processor does not take control of

the system bus while it is in the middle of a critical instruction, which uses the system

bus

• When it is executed the bus access is not allowed for another master till the lock

prefixed instruction is executed completly

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

ASSEMBLER DIRECTIVES AND OPERATORS

The source program is composed of three types of lines: opcode, assemble directive(pseudo

opcodes) & the comments. The opcode create the instruction for the CPU. Assembler directives

give instruction to the assembler. Comments tells us what the program wants to tell us.

Assembler directives are specific for a particular assembler. They are used only during the

assembly of program & generate machine executable code.

An assembler is a program used to convert an assembly language program into the equivalent

machine code modules which may further be converted to executable codes. The assembler

decides the address of each label and substitutes the values for each of the constants and

variables. It then forms the machine code for the mnemonics and data in the assembly language

program. While doing these things, the assembler may find out syntax errors. The logical errors

or other programming errors are not found out by the assembler. For completing all these tasks,

an assembler needs some hints from the programmer, i.e. the required storage for a particular

constant or a variable, logical names of the segments, types of the different routines and

modules, end of file, etc. These, types of hints are given to the assembler using some predefined

alphabetical strings called assembler directives. Assembler directives help the assembler to

correctly understand the assembly language programs to prepare the codes.

Another type of hint which helps the assembler to assign a particular constant with a label or

initialize particular memory locations or labels with constants is called an operator. Rather, the

operators perform the arithmetic and logical tasks unlike directives that just direct the

assembler to correctly interpret the program to code it appropriately. The following directives

are commonly used in the assembly language programming practice using Microsoft Macro

Assembler (MASM) or Turbo Assembler (TASM).

ASSUME(Assume Logical Segment Name)

The ASSUME directive is used to inform the assembler, the names of the logical segments to

be assumed for different segments used in the program. In the assembly language program,

each segment is given a name. For example, the code segment may be given the name CODE,

data segment may be given the name DATA etc. The statement ASSUME CS: CODE directs

the assembler that the machine codes are available in a segment named CODE, and hence the

CS register is to be loaded with the address (segment) allotted by the operating system for the

label CODE, while loading. Similarly, ASSUME DS: DATA indicates to the assembler that

the data items related to the program, are available in a logical segment named DATA, and the

DS register is to be initialized by the segment address value decided by the operating system

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

for the data segment, while loading. It then considers the segment DATA as a default data

segment for each memory operation, related to the data and the segment CODE as a source

segment for the machine codes of the program. The ASSUME statement is a must at the starting

of each assembly language program,

DB(DEFINE BYTE)

The DB directive is used to reserve byte or bytes of memory locations in the available memory.

While preparing the EXE file, this directive directs the assembler to allocate the specified

number of memory bytes to the said data type that may be a constant, variable, string, etc.

Another option of this directive also initializes the reserved memory bytes with the ASCII

codes of the characters specified as a string. The following examples show how the DB

directive is used for different purposes.

LIST DB 0lH, 02H, 03H, 04H

This statement directs the assembler to reserve four memory locations for a list named LIST

and initialize them with the above specified four values.

MESSAGE DB 'GOOD MORNING'

This makes the assembler reserve the number of bytes of memory equal to the number of

characters in the string named MESSAGE and initialize those locations by the ASCII

equivalent of these characters.

DW(DEFINE WORD)

This directive is used to tell the assembler to declare a variable of type word or to reserve

storage locations of type word in memory. The DW directive serves the same purposes as the

DB directive, but it now makes the assembler reserve the number of memory words (16-bit)

instead of bytes. Some examples are given to explain this directive.

WORDS DW 1234H, 4567H

This makes the assembler reserve four words in memory (8 bytes), and initialize the words

with the specified values in the statements. During initialisation, the lower bytes are stored at

the lower memory addresses, while the upper bytes are stored at the higher addresses. Another

option of the DW directive is explained with the DUP operator.

WDATA DW 5 DUP (6666H

This statement reserves five words, i.e. 10-bytes of memory for a word label WDATA and

initializes all the word locations with 6666H.

DD(DEFINE DOUBLE WORD)

This directive is used to declare a variable of type double word or to reserve memory locations

which can be accessed as type double word (Define Doubleword).

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

DQ (DEFINED QUAD WORD)

This directive is used to direct the assembler to reserve 4 words (8 bytes) of memory for the

specified variable and may initialise it with the specified values.

DT (DEFINE TEN BYTES)

The DT directive directs the assembler to define the specified variable requiring la-bytes for

its storage and initialise the 10bytes with the specified values. The directive may be used in

case of variables facing heavy numerical calculations, generally processed by numerical

processors.

ENDS (END of Segment)

This directive marks the end of a logical segment. The logical segments are assigned with the

names using the ASSUME directive. The names appear with the ENDS directive as prefixes to

mark the end of those particular segments. Whatever are the contents of the segments, they

should appear in the program before ENDS. Any statement appearing after ENDS will be

neglected from the segment. The structure shown below explains the fact more clearly.

DATA SEGMENT

.

.

.

DATA ENDS

ASSUME CS: CODE, DS:DATA

CODE SEGMENT.

.

.

.

CODE ENDS

END

The above structure represents a simple program containing two segments named DATA and

CODE. The data related to the program must lie between the DATA SEGMENT and DATA

ENDS statements. Similarly, all the executable instructions must lie between CODE

SEGMENT and CODE ENDS statements.

EQU(Equate)

The directive EQU is used to assign a label with a value or a symbol. The use of this directive

is just to reduce the recurrence of the numerical values or constants in a program code. The

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

recurring value is assigned with a label, and that label is used in place of that numerical value,

throughout the program. While assembling, whenever the assembler comes across the label, it

substitutes the numerical value for that label and finds out the equivalent code.

 Using the EQU directive, even an instruction mnemonic can be assigned with a label, and the

label can then be used in the program in place of the at mnemonic. Suppose, a numerical

constant appears 'in a program ten times. If that constant is to be changed at a later time, one

will have to make all these ten corrections. This may lead to human errors, because it is possible

that a human programmer may miss one of those corrections. This will result in the generation

of wrong codes. If the EQU directive is used to assign the value with a label that can be used

in place of each recurrence of that constant, only one change in the

EQU statement will give the correct and modified code. The examples given below show the

syntax.

LABEL EQU 0500H

ADDITION EQU ADD

The first statement assigns the constant 500H with the label LABEL, while the second

statement assigns another label ADDITION with mnemonic ADD

END(END of Program)

The END directive marks the end of an assembly language program. When the assembler

comes across this END directive, it ignores the source lines available later on. Hence, it should

be ensured that the END statement should be the last statement in the file and should not appear

in between. No useful program statement should lie in the file, after the END statement

ENDP(END of Procedure)

In assembly language programming, the subroutines are called procedures. Thus, procedures

may be independent program modules which return particular results or values to the calling

programs. The ENDP directive is used to indicate the end of a procedure. A procedure is usually

assigned a name, i.e. label. To mark the end of a particular procedure, the name of the

procedure, i.e. label may appear as a prefix with the directive ENDP. The statements, appearing

in the same module but after the ENDP directive, are neglected from that procedure. The

structure given below explains the use of ENDP.

PROCEDURE STAR

STAR ENDP

EVEN(Align on Even Memory Address)

The assembler, while starting the assembling procedure of any program, initializes a location

counter and goes on updating it, as the assembly proceeds. It goes on assigning the available

addresses, i.e. the contents of the location counter, sequentially to the program variables,

constants and modules as per their requirements, in the sequence in which they appear in the

program. The EVEN directive updates the location counter to the next even address if the

current location counter contents are not even, and assigns the following routine or variable or

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

constant to that address. The structure given below explains the directive.constant to that

address. The structure given below explains the directive.

EVEN

PROCEDURE ROOT

.

.

.

ROOT ENDP

The above structure shows a procedure ROOT that is to be aligned at an even address. The

assembler will start assembling the main program calling ROOT. When the assembler comes

across the directive EVEN, it checks the contents of the location counter. If it is odd, it is

updated to the next even value and then the ROOT procedure is assigned to that address, i.e.

the updated contents of the location counter. If the content of the location counter is already

even, then the ROOT procedure will be assigned with the same address.

GROUP (Group the Related segment)

The directive is used to form logical groups of segments with similar purpose or type. This

directive is used to inform the assembler to form a logical group of the following segment

names. The assembler passes information to the linker/loader to form the code such that the

group declared segments or operands must lie within a 64Kbyte memory segment. Thus all

such segments and labels can be addressed using the same segment base

PROGRAM GROUP CODE, DATA, STACK

The above statement directs the loader/linker to prepare an EXE file such that CODE, DATA

and STACK segment must lie within a 64kbyte memory segment that is named as PROGRAM.

Now, for the ASSUME statement, one can use the label PROGRAM rather than CODE, DATA

and STACK as shown.

ASSUME CS: PROGRAM, DS: PROGRAM, SS: PROGRAM.

PROC(Procedure)

The PROC directive marks the start of a named procedure in the statement. Also, the types

NEAR or FAR specify the type of the procedure, i.e whether it is to be called by the main

program located within 64K of physical memory or not. For example, the statement RESULT

PROC NEAR marks the start of a routine RESULT, which is to be called by a program located

in the Same segment of memory. The FAR directive is used for the procedures to be called by

the programs located in different segments of memory. The example statements are as follows:

RESULT PROC NEAR

ROUTINE PROC FAR

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

EXTRN(External and PUBLIC: Public)

The directive EXTRN informs the assembler that the names, procedures and labels declared

after this directive have already been defined in some other assembly language modules. While

in the other module, where the names, procedures and labels actually appear, they must be

declared public, using the PUBLIC directive. If one wants to call a procedure FACTORIAL

appearing in MODULE 1 from MODULE 2; in MODULE1, it must be declared PUBLIC using

the statement PUBLIC FACTORIAL and in module 2, it must be declared external using the

declaration EXTRN FACTORIAL. The statement of declaration EXTRN must be

accompanied by the SEGMENT and ENDS directives of the MODULE 1, before it is called in

MOBULE 2. Thus the MODULE 1 and MODULE 2 must have the following declarations.

MODULEl SEGMENT

PUBLIC FACTORIAL FAR MODULEl ENDS

MODULE2 SEGMENT

EXTRN FACTORIAL FAR

MODULE2 ENDS

ORG(Origin)

The ORG directive directs the assembler to start the memory allotment for the particular

segment, block or code from the declared address in the ORG statement while starting the

assembly process for a module, the assembler initializes a location counter to keep track of the

allotted addresses for the module. If the ORG statement is not written in the program, the

location counter is initialized to 0000. If an ORG 200H statement is present at the starting of

the code segment of that module, then the code will start from 200H address in code segment)

In other words, the location counter will get initialized to the address 0200H instead of 0000H.

Thus, the code for different modules and segments can be located in the available memory as

required by the programmer. The ORG directive can even be used with data segments similarly.

Label

he Label directive is used to assign a name to the current content of the location counter. At

the start of the assembly process, the assembler initializes a location counter to keep track of

memory locations assigned to the program. As the program assembly proceeds, the contents of

the location counter are updated. During the assembly process, whenever the assembler comes

across the LABEL directive, it assigns the declared label with the current contents of the

location counter. The type of the label must be specified, i.e. whether it is a NEAR or a FAR

label, BYTE or WORD label, etc. A LABEL directive may be used to make a FAR jump as

shown below. A FAR jump cannot be made at a normal label with a colon. The label

CONTINUE can be used for a FAR jump, if the program contains the following statement.

CONTINUE LABEL FAR

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

The LABEL directive can be used to refer to the data segment along with the data type, byte

or word as shown.

DATA SEGMENT

DATAS DB 50H DUP (?)

DATA-LAST LABEL BYTE FAR

DATA ENDS

After reserving 50H locations for DATAS, the next location will be assigned a label

DATALAST and its type will be byte and far.

OPERATORS

OFFSET(Offset of a Label)

When the assembler comes across the OFFSET operator along with a label, it first computes

the 16-bit displacement (also called as offset interchangeably) of the particular label, and

replaces the string 'OFFSET LABEL' by the computed displacement. This operator is used with

arrays, strings, labels and procedures to decide their offsets in their default segments. The

segment may also be decided by another operator of similar type, viz, SEG. Its most common

use is in the case of the indirect, indexed, based indexed or other addressing techniques of

similar types, used to refer to the memory indirectly. The examples of this operator are as

follows:

Example:

CODE SEGMENT

MOV SI, OFFSET LIST

CODE ENDS

DATA SEGMENT

LIST DB 10H

DATA ENDS

PTR(Pointer)

The pointer operator is used to declare the type of a label, variable or memory operand. The

operator PTR is prefixed by either BYTE or WORD. If the prefix is BYTE, then the particular

label, variable or memory operand is treated as an 8-bit quantity, while if WORD is the prefix,

then it is treated as a 16- bit quantity. In other words, the PTR operator is used to specify the

data type -byte or word. The examples of the PTR operator are as follows:Example:

MOV AL, BYTE PTR [SI] /Moves content of memory location addressed by

SI (8-bit) to AL

INC BYTE PTR [BX] /Increments byte contents of memory location

addressed by BX

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

MOV BX, WORD PTR [2000H] //Moves 16-bit content of memory location

2000H to BX, i.e. [2000H] to BL [2001 H] to BH

INC WORD PTR [3000H] Increments word contents of memory location

3000H considering contents of 3000H (lower

byte) and 3001 H (higher byte) as a 16-bit number

In case of JMP instructions, the PTR operator is used to specify the type of the jump, i.e. near

or far, as explained in the examples given below.

JMP WORD PTR [BX] -NEAR Jump JMP WORD PTR [BX] -FAR Jump

SHORT

The SHORT operator indicates to the assembler that only one byte is required to code the

displacement for a jump (i.e. displacement is within -128 to +127 bytes from the address of the

byte next to the jump opcode). This method of specifying the jump address saves the memory.

Otherwise, the assembler may reserve two bytes for the displacement. The syntax of the

statement is as given below.

JMP SHORT LABEL

SEG(Segment of a Label)

The SEG operator is used to decide the segment address of the label, variable, or procedure

and substitutes the segment base address in place of ‘SEG label’. The example given below

explain the use of SEG operator.

MOV AX, SEG ARRAY; This statement moves the segment address

MOV DS, AX; of ARRAY in which it is appearing, to register AX and then to DS.

TYPE

The TYPE operator directs the assembler to decide the data type of the specified label and

replaces the 'TYPE label' by the decided data type. For the word type variable, the data type is

2, for double word type, it is 4, and for byte type, it is 1. Suppose, the STRING is a word array.

The instruction

MOV AX, TYPE STRING moves the value 0002H in AX.

‘+’ & ‘—‘ OPERATORS

These operators represent arithmetic addition and subtraction respectively and are typically

used to add or subtract displacements(8 or 16 bit) to base or index registers or stack or base

pointers.

Eg: MOV AL, [SI+2]

MOV DX, [BX – 5]

MOV BX, [OFFSET LABEL + 10H]

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

LENGTH(Byte Length of a Label)

This directive is not available in MASM. This is used to refer to the length of a data array

 string.

 MOV CX, LENGTH ARRAY

This statement, when assembled, will substitute the length of the array ARRAY in bytes,

 in the instruction.

LOCAL

 The labels, variables, constants or procedures declared LOCAL in a module are to be used

 only by that module. At a later time, some other module may declare a particular data type

LOCAL, which is previously declared LOCAL by another module or modules. Thus the

 samelabel may serve different purposes for different modules of a program. With a single

 declaration statement, a number of variables can be declared local, as shown.

 LOCAL a, b, DATA, ARRAY, ROUTINE

NAME(Logical Name of a Module)

The NAME directive is used to assign a name to an assembly language program module. The

module may now be referred to by its declared name. The names, if selected to be suggestive,

 may point out the functions of the different modules and hence may help in the documentation.

 PUBLIC

The PUBLIC directive is used along with the EXTRN directive. This informs the assembler

that the labels, variables, constants, or procedures declared PUBLIC may be accessed by other

assembly modules to form their codes, but while using the PUBLIC declared labels, variables,

constants or procedures the user must declare them externals using the EXTRN directive. On

the other hand, the data types declared EXTRN in a module of the program, may be declared

PUBLIC in at least anyone of the other modules of the same program.

SEGMENT: Logical Segment

The SEGMENT directive marks the starting of a logical segment. The started segment is also

assigned a name, i.e. label, by this statement. The SEGMENT and ENDS directive must bracket

each logical segment of a program. In some cases, the segment may be assigned a type like

PUBLIC (i.e. can be used by other modules of the program while linking) or GLOBAL (can

be accessed by any other modules). The program structure given below explains the use of the

SEGMENT directive.

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

EXE . CODE SEGMENT GLOBAL; Start of segment named EXE.CODE, that can be

accessed by any other module.

EXE . CODE ENDS; END of EXE.CODE logical segment.

GLOBAL

The labels, variables, constants or procedures declared GLOBAL may be used by other

modules of the program. Once a variable is declared GLOBAL, it can be used by any module

in the program. The following statement declares the procedure ROUTINE as a global label.

ROUTINE PROC GLOBAL

Assembly Language programming

ASSEMBLY PROCESS

Microsoft assembler MASM is an easy to use and popular assembler. The MASM accepts the

file names only with extension .ASM. Even if a filename without any extension is given as

input, it provides an .ASM extension to it. The command for assembling the program is

C> MASM <filename.asm>

Eg:

C> MASM KMB.ASM

or

C> MASM KMB

After the cross reference file name is entered the assembly process starts. If the program

contains syntax errors, they are displayed using error code number and the corresponding line

number at which they appear. Once these syntax errors and warnings are taken care of by the

programmer, the assembly process is completed successfully. The successful assembly process

may generate the .OBJ,.LST and .CRF files, which may further be used by the linker program

to link the object modules and generate an executable (.EXE) file from a .OBJ file.

LINKING AND RELOCATION

The DOS linking program LINK.EXE links the different object modules of a source program

and function library routines to generate an integrated executable code of the source program.

The main input to the linker is the .OBJ file that contains the object modules of the source

programs. Other supporting information may be obtained from the files generated by the

MASM. The linker program is invoked using the following options.

C> LINK

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

or

C>LINK <filename.OBJ>

The .OBJ extension is a must for a file to be accepted by the LINK as a valid object

file. The first option may generate a display asking for the object file, list file and libraries as

inputs and an expected name of the .EXE file to be generated. The output of the LINK program

is an executable file with the entered filename and .EXE extension. This executable filename

can further be entered at the DOS prompt to execute the file.

After linking, there has to be re-allocation of the sequences of placing the codes before

actually placement of the codes in the memory. The loader program performs the task of

reallocating the codes after finding the physical RAM addresses available at a given instant.

DEBUGGING

DEBUG.COM is a DOS utility that facilitates the debugging and trouble shooting of

assembly language programs. The DEBUG utility enables you to have the control of resources.

The DEBUG command at DOS prompt invokes this facility. A ‘_’ (dash) display signals the

successful invoke operation of DEBUG.

DEBUG offers a good platform for trouble shooting, executing and observing the results of the

assembly language programs. There are different debug commands for executing debug

statement.

1. Write an assembly language program for addition of two numbers.

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

OPR1 DW 1234H

OPR2 DW 0002H

RESULT DW O1 DUP(?)

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS,AX

 MOV AX,OPR1

 MOV BX,OPR2

 CLC

 ADD AX,BX

 MOV DI,OFFSET RESULT

 MOV [DI],AX

 MOV AH,4CH

 INT 21H

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

CODE ENDS

 END START

2. Write a program to find out the number of even and odd numbers from a given series

of 16 bit hexadecimal numbers.

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

LIST DW 2357H, 3456H, 1234H, 6754H

COUNT EQU O4H

DATA ENDS

CODE SEGMENT

START: XOR BX,BX

 XOR DX,DX

 MOV AX, DATA

 MOV DS,AX

 MOV CL, COUNT

 MOV SI, OFFSET LIST

AGAIN: MOV AX, [SI]

 ROR AX,01

 JC ODD

 INC BX

 JMP NEXT

ODD : INC DX

NEXT: ADD SI, 02

 DEC CL

 JNZ AGAIN

 MOV AH,4CH

 INT 21H

 CODE ENDS

 END START

 CST 307 MICROPROCESSORS AND MICROCONTROLLERS

